
 

 

 CREC. Dept. of CSE Page 36 

 

 

 

 

 

 

 

UNIT-2 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 CREC. Dept. of CSE Page 37 

 

UNIT-2 

 

Relational Algebra & Calculus 

 

Preliminaries 

 

A query language is a language in which user requests to retrieve some information from the database. The 

query languages are considered as higher level languages than programming languages. Query languages are of 

two types, 

 

 Procedural Language  

 Non-Procedural Language  

 

1. In procedural language, the user has to describe the specific procedure to retrieve the information from 

the database.  

 

Example: The Relational Algebra is a procedural language. 

 

2. In non-procedural language, the user retrieves the information from the database without describing the 

specific procedure to retrieve it. 

 

Example: The Tuple Relational Calculus and the Domain Relational Calculus are non-procedural 

languages. 

 

Relational Algebra 

 

The relational algebra is a procedural query language. It consists of a set of operations that take one or two 

relations (tables) as input and produce a new relation, on the request of the user to retrieve the specific 

information, as the output. 

 

The relational algebra contains the following operations, 

 

1) Selection 2) Projection 3) Union 4) Rename 

5) Set-Difference 6) Cartesian product  7) Intersection               8) Join 

9) Divide 10) Assignment    

The Selection, Projection and Rename operations are called unary operations because they operate only on one 

relation. The other operations operate on pairs of relations and are therefore called binary operations



 

 

 CREC. Dept. of CSE Page 38 

 

 

1) The Selection ( ) operation: 

 

The Selection is a relational algebra operation that uses a condition to select rows from a relation. A new 

relation (output) is created from another existing relation by selecting only rows requested by the user that satisfy 

a specified condition. The lower greek letter ‘sigma ’ is used to denote selection operation. 

 

General Syntax: Selection condition ( relation_name ) 

 

Example: Find the customer details who are living in Hyderabad city from customer relation. 

 

city = ‘Hyderabad’ ( customer ) 

 

The selection operation uses the column names in specifying the selection condition. Selection conditions 

are same as the conditions used in the ‘if’ statement of any programming languages, selection condition uses the 

relational operators < > <= >= != . It is possible to combine several conditions into a large condition using the 

logical connectives ‘and’ represented by ‘ ‘ and ‘or’ represented by ‘ ’. 

 

Example: 

 

Find the customer details who are living in Hyderabad city and whose customer_id is greater than 1000 in 

Customer relation. 

 

city = ‘Hyderabad’ customer_id > 1000  ( customer ) 

 

2) The Projection ( ) operation: 

 

The projection is a relational algebra operation that creates a new relation by deleting columns from an 

existing relation i.e., a new relation (output) is created from another existing relation by selecting only those 

columns requested by the user from projection and is denoted by letter pi ( . 

 

The Selection operation eliminates unwanted rows whereas the projection operation eliminates unwanted 

columns. The projection operation extracts specified columns from a table. 

 

Example: Find the customer names (not all customer details) who are living in Hyderabad city from customer 

relation. 

 

 customer_name ( city = ‘Hyderabad’ ( customer ) ) 

 



 

 

 CREC. Dept. of CSE Page 39 

 

In the above example, the selection operation is performed first. Next, the projection of the resulting 

relation on the customer_name column is carried out. Thus, instead of all customer details of customers living 

in Hyderabad city, we can display only the customer names of customers living in Hyderabad city. 

 

The above example is also known as relational algebra expression because we are combining two or 

more relational algebra operations (ie., selection and projection) into one at the same time. 

 

Example: Find the customer names (not all customer details) from customer relation. 

 

 customer_name ( customer ) 

 

The above stated query lists all customer names in the customer relation and this is not called as 

relational algebra expression because it is performing only one relational algebra operation. 

 

 

 3) The Set Operations: ( Union, Intersection, Set-Difference, Cartesian product ) 

 

i) Union ‘  ’ Operation: 

 

The union denoted by ‘ ’  It is a relational algebra operation that creates a union or combination of two 

relations. The result of this operation, denoted by d b is a relation that includes all tuples that all either in d or 

in b or in both d and b, where duplicate tuples are eliminated. 

 

Example: Find the customer_id of all customers in the bank who have either an account or a loan or both. 

 

 customer_id ( depositor )   customer_id ( borrower ) 

 

To solve the above query, first find the customers with an account in the bank. That is  customer_id 

( depositor ). Then, we have to find all customers with a loan in the bank,  customer_id ( borrower ). Now, to 

answer the above query, we need the union of these two sets, that is, all customer names that appear in either or 

both of the two relations by  customer_id ( depositor )  customer_id ( borrower ) 

 

If some customers A, B and C are both depositors as well as borrowers, then in the resulting relation, their 

customer ids will occur only once because duplicate values are eliminated. 

 



 

 

 CREC. Dept. of CSE Page 40 

 

Therefore, for a union operation d b to be valid, we require that two conditions to be satisfied, 

 

i) The relations depositor and borrower must have same number of attributes / columns.  

 

ii) The domains of ith attribute of depositor relation and the ith attribute of borrower relation must be the 

same, for all i.  

 

• The Intersection ‘ ’ Operation:  

 

The intersection operation denoted by ‘ ’  It is a relational algebra operation that finds tuples that are in 

both relations. The result of this operation, denoted by d b, is a relation that includes all tuples common in both 

depositor and borrower relations. 

 

Example: Find the customer_id of all customers in the bank who have both an account and a loan. 

 

 customer_id ( depositor )   customer_id ( borrower ) 

 

The resulting relation of this query, lists all common customer ids of customers who have both an account 

and a loan. Therefore, for an intersection operation d b to be valid, it requires that two conditions to be 

satisfied as was the case of union operation stated above. 

 

iii) The Set-Difference ‘  ’ Operation: 

 

The set-difference operation denoted by’ ’  It is a relational algebra operation that finds tuples that are 

in one relation but are not in another.  

Example: 

 

 customer_id ( depositor )   customer_id ( borrower ) 

 

 

The resulting relation for this query, lists the customer ids of all customers who have an account but not a 

loan. Therefore a difference operation d b to be valid, it requires that two conditions to be satisfied as was case 

of union operation stated ablove.

 



 

 

 CREC. Dept. of CSE Page 41 

 

iv) The Cross-product (or) Cartesian Product ‘ X ’ Operation: 

 

The Cartesian-product operation denoted by a cross ‘X’  It is a relational algebra operation which allows 

to combine information from who relations into one relation. 

 

Assume that there are n1 tuple in borrower relation and n2 tuples in loan relation. Then, the result of this 

operation, denoted by r = borrower X loan, is a relation ‘r’ that includes all the tuples formed by each possible pair 

of tuples one from the borrower relation and one from the loan relation. Thus, ‘r’ is a large relation containing n1 

* n2 tuples. 

 

The drawback of the Cartesian-product is that same attribute name will repeat. 

 

Example: Find the customer_id of all customers in the bank who have loan > 10,000. 

 

 customer_id ( borrower.loan_no= loan.loan_no (( borrower.loan_no= ( borrower X 

loan ) ) ) 

 

That is, get customer_id from borrower relation and loan_amount from loan relation. First, find Cartesian 

product of borrower X loan, so that the new relation contains both customer_id, loan_amoount with each 

combination. Now, select the amount, by bloan_ampunt > 10000. 

 

So, if any customer have taken the loan, then borrower.loan_no = loan.loan_no should be selected as their 

entries of loan_no matches in both relation. 

 

4) The Renaming “ ” Operation: 

 

The Rename operation is denoted by rho ’ ’. It is a relational algebra operation which is used to give the 

new names to the relation algebra expression. Thus, we can apply the rename operation to a relation ‘borrower’ to 

get the same relation under a new name. Given a relation ‘customer’, then the expression returns the same relation 

‘customer’ under a new name ‘x’. 

 

  x ( customer )  

 

After performed this operation, Now there are two relations, one with customer name and second with 

 

‘x’ name. The ‘rename’ operation is useful when we want to compare the values among same column attribute in 

a relation. 

 

Example: Find the largest account balance in the bank. 



 

 

 CREC. Dept. of CSE Page 42 

 

 

 account.balance ( account.balance > d.balance ( account X d (account) ) ) 

 

If we want to find the largest account balance in the bank, Then we have to compare the values among 

same column (balance) with each other in a same relation account, which is not possible. 

 

So, we rename the relation with a new name‘d’. Now, we have two relations of account, one with account 

name and second with ‘d’ name. Now we can compare the balance attribute values with each other in separate 

relations. 

 

 

5) The Joins “ ” Operation: 

 

The join operation, denoted by join ‘ ’. It is a relational algebra operation, which is used to combine 

 

(join) two relations like Cartesian-product but finally removes duplicate attributes and makes the operations 

(selection, projection, ..) very simple. In simple words, we can say that join connects relations on columns 

containing comparable information. 

 

There are three types of joins, 

i) Natural Join  

ii) Outer Join  

iii) Theta Join (or) Conditional Join  

 

i) Natural Join:  

 

The natural join is a binary operation that allows us to combine two different relations into one relation 

and makes the same column in two different relations into only one-column in the resulting relation. Suppose 

we have relations with following schemas, which contain data on full-time employees. 

 

employee ( emp_name, street, city )   and 

 

employee_works(emp_name, branch_name, salary) 

 



 

 

 CREC. Dept. of CSE Page 43 

 

The relations are, 

 

emp_name street city 

   

Coyote Town 

Hollywoo

d 

   

Rabbit Tunnel 

Carrotvill

e 

   

Smith 

Revolve

r Vally 

   

Williams Seaview Seattle 

   

 

employee relation 

 

 

emp_name branch_name salary 

Coyote Mesa 15000 

   

Rabbit Mesa 12000 

   

Gates Redmond 25000 

   

Williams Redmond 23000 

 

employee_works relation 

 

 

 

If we want to generate a single relation with all the information (emp_name, street, city, branch_name and 

salary) about full-time employees. then, a possible approach would be to use the natural-join operation as follows, 

 

employee  employee_works 

 

The result of this expression is the relation, 

 

emp_name street city branch_name salary 

Coyote Town Hollywood Mesa 15000 

Rabbit Tunnel Carrotville Mesa 12000 

Williams Seaview Seattle Redmond 23000 

 

result of Natural join 

We have lost street and city information about Smith, since tuples describing smith is absent in 

employee_works. Similarly, we have lost branch_name and salary information about Gates, since the tuple 

describing Gates is absent from the employee relation. Now, we can easily perform select or reject query on new 

join relation. 



 

 

 CREC. Dept. of CSE Page 44 

 

 

Example: Find the employee names and city who have salary details. 

 

 emp_name, salary, city ( employee  employee_works ) 

 

The join operation selects all employees with salary details, from where we can easily project the 

employee names, cities and salaries. Natural Join operation results in some loss of information. 

ii) Outer Join: 

 

The drawback of natural join operation is some loss of information. To overcome the drawback of natural 

join, we use outer-join operation. The outer-join operation is of three types, 

 

a) Left outer-join ( ) 

b) Right outer-join ( ) 

c) Full outer-join ( ) 

a) Left Outer-join: 

 

The left outer-join takes all tuples in left relation that did not match with any tuples in right relation, adds 

the tuples with null values for all other columns from right relation and adds them to the result of natural join as 

follows, 

 

The relations are, 

 

emp_name street city 

   

Coyote Town Hollywood 

   

Rabbit Tunnel Carrotville 

   

Smith 

Revolv

er Valley 

   

Williams 

Seavie

w Seattle 

   

 

 

emp_name branch_name salary 

Coyote Mesa 15000 

   

Rabbit Mesa 12000 

   

Gates Redmond 25000 

   

Williams Redmond 23000 

 

 

employee relation 

 employee_works relation  

     



 

 

 CREC. Dept. of CSE Page 45 

 

The result of this expression is the relation,    

       

 emp_name street city branch_name salary  

 Coyote Town Hollywood Mesa 15000  

 Rabbit Tunnel Carrotville Mesa 12000  

 Smith Revolver Valley null null  

 Williams Seaview Seattle Redmond 23000  

 

result of Left Outer-join 

b) Right Outer-join: 

 

The right outer-join takes all tuples in right relation that did not match with any tuples in left relation, adds 

the tuples with null values for all other columns from left relation and adds them to the result of natural join as 

follows, 

 

The relations are, 

 

emp_name street city 

   

Coyote Town 

Hollywoo

d 

   

Rabbit Tunnel 

Carrotvill

e 

   

Smith 

Revolv

er Valley 

   

Williams 

Seavie

w Seattle 

   

 

 

emp_name branch_name salary 

Coyote Mesa 15000 

   

Rabbit Mesa 12000 

   

Gates Redmond 25000 

   

Williams Redmond 23000 



 

 

 CREC. Dept. of CSE Page 46 

 

 

The result of this expression is the relation, 

 

emp_name street city branch_name salary 

Coyote Town Hollywood Mesa 15000 

Rabbit Tunnel Carrotville Mesa 12000 

Gates null null Redmond 25000 

Williams Seaview Seattle Redmond 23000 

 

result of Right Outer-join 

c) Full Outer-join: 

 

The full outer-join operation does both of those operations, by adding tuples from left relation that did not 

match any tuples from the reight relations, as well as adds tuples from the right relation that did not match any 

tuple from the left relation and adding them to the result of natural join as follows, 

 

The relations are, 

 

emp_name street city 

   

Coyote Town 

Hollywoo

d 

   

Rabbit Tunnel 

Carrotvill

e 

   

Smith 

Revolv

er Valley 

   

Williams 

Seavie

w Seattle 

   

 

employee relation 

 

 

emp_name branch_name salary 

Coyote Mesa 15000 

   

Rabbit Mesa 12000 

   

Gates Redmond 25000 

   

Williams Redmond 23000 

 

employee_works relation 

 

 

The result of this expression is the relation, 

 



 

 

 CREC. Dept. of CSE Page 47 

 

emp_name street city branch_name salary 

Coyote Town Hollywood Mesa 15000 

Rabbit Tunnel Carrotville Mesa 12000 

Smith Revolver Valley null null 

Gates null null Redmond 25000 

Williams Seaview Seattle Redmond 23000 

 

result of Full Outer-join 

 

iii) Theta Join (or) Condition join: 

 

The theta join operation, denoted by symbol “ ” . It is an extension to the natural join operation 

that combines two relations into one relation with a selection condition ( ). 

 

The theta join operation is expressed as employee  salary < 19000 employee_works and the resulting 

is as follows, 

 

employee  salary > 20000  employee_works 

 

There are two tuples selected because their salary greater than 20000 (salary > 20000). The result of theta 

join as follows, 

 

The relations are, 

 

emp_name street city 

   

Coyote Town 

Hollywoo

d 

   

Rabbit Tunnel 

Carrotvill

e 

   

Smith 

Revolv

er Valley 

   

Williams 

Seavie

w Seattle 

   

 

 

emp_name branch_name salary 

Coyote Mesa 15000 

   

Rabbit Mesa 12000 

   

Gates Redmond 25000 

   

Williams Redmond 23000 



 

 

 CREC. Dept. of CSE Page 48 

 

The result of this expression is the relation,    

       

 emp_name street city branch_name salary  

 Gates null null Redmond 25000  

 Williams Seaview Seattle Redmond 23000  

 

result of Theta Join (or) Condition Join 

 

6) The Division “ ” Operation: 

 

The division operation, denoted by “ ”, is a relational algebra operation that creates a new relation by 

selecting the rows in one relation that does not match rows in another relation. 

 

Let, Relation A is (x1, x2, …., xn, y1, y2, …, ym)  and 

Relation B is (y1, y2, …, ym), 

 

Where, y1, y2, …, ym  tuples are common to the both relations A and B with same domain 

compulsory. 

 

Then, A B = new relation with x1, x2, …., xn tuples. Relation A and B represents the dividend and 

devisor respectively. A tuple ‘t’ is in a b, if and only if two conditions are to be satisfied, 

 

 t is in A-B (r)  

 

 for every tuple tb in B, there is a tuple ta in A satisfying the following two things,  

 

1. ta[B] = tb[B]  

 

2. ta[A-B] = t  

 

Relational Calculus 

 

Relational calculus is an alternative to relational algebra. In contrast to the algebra, which is procedural, 

the relational calculus is non-procedural or declarative. 

 

It allows user to describe the set of answers without showing procedure about how they should be 

computed. Relational calculus has a big influence on the design of commercial query languages such as SQL and 

QBE (Query-by Example). 



 

 

 CREC. Dept. of CSE Page 49 

 

 

Relational calculus are of two types, 

 

 Tuple Relational Calculus (TRC)  

 

 Domain Relational Calculus (DRC)  

 

Variables in TRC takes tuples (rows) as values and TRC had strong influence on SQL. 

 

Variables in DRC takes fields (attributes) as values and DRC had strong influence on QBE. 

 

 i) Tuple Relational Calculus (TRC): 

 

The  tuple  relational  calculus,  is  a  non-procedural  query  language  because  it  gives  the  

desired information without showing procedure about how they should be computed. 

 

A query in Tuple Relational Calculus (TRC) is expressed as { T | p(T) } 

 

Where, T - tuple variable, 

P(T) - ‘p’ is a condition or formula that is true for ‘t’. 

 

In addition to that we use, 

 

T[A] - to denote the value of tuple t on attribute A and 

 

T r  - to denote that tuple t is in relation r. 

 

Examples: 

 

1) Find all loan details in loan relation. 

 

{ t | t loan } 

 

This query gives all loan details such as loan_no, loan_date, loan_amt for all loan table in a bank. 

2) Find all loan details for loan amount over 100000 in loan relation. 

 

{ t | t loan t [loan_amt] > 100000 } 

This query gives all loan details such as loan_no, loan_date, loan_amt for all loan over 100000 in a loan 

table in a bank. 



 

 

 CREC. Dept. of CSE Page 50 

 

ii) Domain Relational Calculus (DRC): 

 

A Duple Relational Calculus (DRC) is a variable that comes in the range of the values of domain (data 

types) of some columns (attributes). 

 

A Domain Relational Calculus query has the form, 

 

{ < x1, x2, …., xn >  |  p( < x1, x2, …., xn > ) } 

 

Where, each xi is either a domain variable or a constant and p(< x1, x2, …., xn >) denotes a DRC 

formula. 

 

A DRC formula is defined in a manner that is very similar to the definition of a TRC formula. The main 

difference is that the variables are domain variables. 

 

 

Examples: 

 

1) Find all loan details in loan relation. 

 

{ < N, D, A > | < N, D, A > loan } 

 

This query gives all loan details such as loan_no, loan_date, loan_amt for all loan table in a bank. Each 

column is represented with an initials such as N- loan_no, D – loan_date, A – loan_amt. The condition < N, D, A > 

loan ensures that the domain variables N, D, A are restricted to the column domain. 

 

 

2.3.1 Expressive power of Algebra and Calculus 

 

The tuple relational calculus restricts to safe expressions and is equal in expressive power to relational 

algebra. Thus, for every relational algebra expression, there is an equivalent expression in the tuple relational 

calculus and for tuple relational calculus expression, there is an equivalent relational algebra expression. 

A safe TRC formula Q is a formula such that, 

 

 For any given I, the set of answers for Q contains only values that are in dom(Q, I).  

 

 For each sub expression of the form R(p(R)) in Q, if a tuple r makes the formula true, then r contains  

only constraints in dom(Q, I). 

 



 

 

 CREC. Dept. of CSE Page 51 

 

3) For each sub expression of the form R(p(R)) in Q, if a tuple r contains a constant that is not in 

dom(Q, I), then r must make the formula true. 

 

The expressive power of relational algebra is often used as a metric how powerful a relational database 

query language is. If a query language can express all the queries that we can express in relational algebra, it is 

said to be relationally complete. A practical query language is expected to be relationally complete. In addition, 

commercial query languages typically support features that allow us to express some queries that cannot be 

expressed in relational algebra. 

 

When the domain relational calculus is restricted to safe expression, it is equivalent in expressive power 

to the tuple relational calculus restricted to safe expressions. All three of the following are equivalent, 

 

 The relational algebra  

 

 The tuple relational calculus restricted to safe expression  

 

 

 The domain relational calculus restricted to safe expression  


